
N95- 24123

Client/Server Data Serving for High Performance Computing

Abstract

Chris Wood

Maximum Strategy Incorporated

801 Buckeye Court, Milpitas CA. 95035

chrisw@maxstrat, com
408-383-1600

408-383-1616 (fax)

This paper will attempt to examine the industry requirements for shared network data

storage and sustained high speed (10 's to I00 's to thousands" of megabytes per second)

network data serving via the NFS and FTP protocol suite. It will discuss the current

structural and architectural impediments to achieving these sorts of data rates cost

effectively today on many general purpose servers and will describe an architecture and

resulting product family that addresses these problems.

The sustained performance levels that were achieved in the lab will be shown as well as a

discussion of early customer experiences utilizing both the HIPPI-IP and A 734 OC3-IP

network interfaces.

Introduction:

Back in the dark ages, about the time that touch-tone telephones were coming into vogue,

computers were simple things that read in some data and a program, processed the data

and spit out the answer. Data storage

typically consisted of small amounts of core

memory, card reader/punch machines and

maybe a tape drive. Disk storage added the

dimension of random access to data, but

was typically directly attached to the central

processor by any number of proprietary I/O
schemes 1.

Data sharing

Early customers in the high performance

arena often owned several processors: one

or two very large number-crunches and

several smaller machines used to prepare

the data for the large machine and/or print Figure 1: Traditional Supercomputer Center

the output stream generated by the number crunchers 2. A typical installation might have

looked like that shown in Figure 1.

Sharing of data across computing platforms was typically done by copying data located on

one processor to tape and reading it on another. Just attaching disk storage to multiple

185

PRE_EDI]_ PAOli _ ][_O_ F'ILMFJ_ ,iNTENTIONALLYBLANK



processors did not address the problem since most processors utilized different physical

and logical attachments. Even if two machines, by chance, could physically share a disk

storage device, different machines wrote and read data in different ways and could not
access each others data.

Some early solutions involved the use of black boxes that attempted to mate different

interfaces and address data format incompatibilities. The large number of interfaces and

file structures in use today (and growing!) tended to work against this type of an

interconnect solution 3. In an early, and very innovative, attempt to address the problem of

incompatible file systems, the Los Alamos Lab's created the Common File System (CFS) 4

on an IBM mainframe base. Architecturally, CFS could be considered to be the first

implementation of networked data serving. It addressed the issues of data sharing amongst

heterogeneous hardware platforms, incompatible file systems (e.g. its name...Common File

System) and the problem of incompatible physical I/O attachment schemes - although this

was often accomplished via "black box" I/O mating hardware.

The ever growing complexity of the "black box" solution for heterogeneous platform

interconnect ruled this method out as a long term answer to seamless data sharing.

Alternatively, all vendors could adopt a common file system and I/O structure. This was

thought unlikely.

Client/Server to the rescue?

A little over ten years ago, a group of UNIX architects at Sun Microsystems realized that

the only way to address the data sharing problem (as well as data currency, consistency

and access) was to remove the "ownership" of the data from the compute processor (the

entity who processes the data) in a manner similar to that utilized by CFS and store it on

an independent "server" who's only job is to store and retrieve that data when requested

to do so by the compute processor (e.g. the "client"). Most importantly, they also defined

a standard way to access the data that would be independent of any particular physical file

system and physical interconnect. Thus was born the Network File System (NFS); the

original foundation of client/server computing.

Speed limit: 5 MPH.

DEC talking to IBM, SGI communing with HP, The USSR making peace with the USA!

All these things became true; unfortunately the Cold War lasted 50 years and that seems to

be how long (in a relative sense) any self respecting high performance computer seems to

have to wait for data from its "server" today. The convince of sharing data across many

platforms comes at a price - speed. NFS (and essentially any exportable file system

available today) is primarily hamstrung by three major bottlenecks:

1. The speed that the server's disk subsystem can deliver data to the NFS server, and

2. The speed that the NFS server can process this data through its own file system and

encapsulate (packetize) this data with the UDP and IP network protocols and deliver it

to the network fabric, and

3. The finite usable speed of the fabric s .

186



Figure 2: Disk I/O protocol stack

Slow... Fast

Block I/0
(~1.5 MB/Sec.)

II0 Buffers Memory

File S stem Manager

(raw) I/0 Sector I/0
(~4 MB/Sec.) (~5 MB/Sec.)

-- Device

Driver

Figure 3: Effective data rate through a UNIX platform

Ethernet, at 10 Mbit/second focused

everybody on item three because of its

low usable bandwidth and, after some

frustration, begat FDDI (and later H1PPI,

Fibre Channel and ATM) which was

supposed to be 10 times faster. To

everybody's amazement, they did not get

10X the data rate, they got 2-3X the data

on a good day and often less. Adding

more FDDI rings, routers, bridges and

other network paraphernalia did not seem

to help. Just speeding up the fabric did
not seem to be the answer. Items one and

two were now the gate, but seemed to

have received less attention by industry

over the past several years than may have
been deserved 6.

The real culprits exposed!

For an NFS server to deliver data to a

client it first has to read the data off the

disk subsystem in the server. In a typical

UNIX environment the software protocol

stack would look something like that

shown in Figure two. If you measure

actual disk data rates starting at the disk

interface and working your way towards an application (e.g. NFS server or a user

application) the effective delivered rate decreases with each step up the protocol stack.

Figure three illustrates this point graphically 7. Fast disk I/O becomes slow disk data by the

time it reaches the requesting application. A typical SCSI disk of recent vintage can

deliver about 5 megabytes a second of user data off the media. By the time the data has

traversed the protocol stack labyrinth, the sustained delivery rate has often decreased to

about 1.5 megabytes a second. Most storage subsystems t are not capable of delivering

high sustained bandwidth to the requesting application; be it the NFS server or a users

application.

lncrementalism: Disk striping, data caches and other software improvements.

Various incremental methods have been proposed and/or implemented in a limited sense to

attempt to address this problem• The most common of these is disk striping wherein the

disk device drivers and (usually) the layer of code that performs the function of the logical

volume manager are modified to break up a users data record into smaller chunks and

write (stripe) these chunks onto multiple disks simultaneously. Various RAID types may

A "storage subsystem", as used here, represents the complete collection of components necessary to

deliver data to the requesting application: Disk drives, I/O cards, software layers, file systems, etc.

187



alsobe imbeddedin the software to increase data availability. Some high data rates have

been achieved under laboratory conditions by using this method but they typically required

extremely large data request sizes on the order of multiple 100's of megabytes or more

_ _,¢,,///////////////_ that are primarily sequential single

Typical high- _- i_,,___ stream/single user in nature.S By definition, a

performance _ ,_, '_ _ shared network server must deliver multiplework_on ;_ _ streams of data to multiple users. L_ch

withstriping i i' _ _ network request, when using the NFS

SCSI device _ : _:=

drivers, i;_i_

_'/////,

. .......... APPLICATION

_'r"///P_ TAv iL

i . High Performance Storage Server

Figure 4: Software vs. Hardware striping

modification to most file systems and virtual

protocol, is limited to 8 kilobyte datagrams

under NFS-2 and 60 kilobyte datagrams

under NFS-3. Sot_ware disk striping, at least

as currently implemented, does not seem to
be the answer.

Massive data caching can address some of

these concerns by preemptively reading

ahead (i.e. turning small user requests into

large I/O requests) multiple megabytes of

data in order to achieve high bandwidth from

the disk subsystem. Depending on the

locality of reference, sequential (or non

sequential) nature of the clients data access

patterns, caching may or may not help. In all

cases, allocating large amounts of main

memory for preemptive disk caching is not

cheap nor always possible without additional

memory managers.

Striping, and optionally software RAID artifacts, tend to add significant overhead to basic

I/O operations. A 4+P RAID 5 stripe implemented on a set of generic SCSI drives and

adapters requires 5 invocations of the basic disk I/O protocol stack (SCSI disk driver, card

driver and unique device head codes) all contending for system I/O bus bandwidth and

main memory access. Data transfer is not really parallel due to the Von Nuemann nature

of most machines; rather it is (hopefully) rapidly interleaved in such a way as to appear

parallel in nature to the requester. Sitting on top of these multiple device drivers would be

a "collection manager" who's role in life is to re-assemble the users data records out of the

disk chunks read by the device drivers (or on a write operation perform the "chunking" of

the data records), verify correct parity and pass the re-assembled records to the user

and/or to the file system buffer space.

We have noticed that it required approximately 5% of a large UNIX servers compute

cycles to sustain a 4-5 megabyte per second data stream at the raw interface 9. With the

addition of"collection manager" overhead and optionally a software RAID function, the

I/O overhead actually experienced by the user would be higher. To hypothetically sustain a

50 megabyte per second striped SCSI stream at the raw interface may consume up to 50-

60% of a typical servers available cycles; thus not leaving much for any useful work such

188



Client/Server. ....

The performance
conundrum

Your Data

Figure 5: Disk and network protocol stacks

as actually delivering data to a client

application. A better way to deliver data

to the NFS server needs to be found.

The search for a better way

Based on what has been discussed

previously, we recognized that using a

general purpose UNIX (or other OS)

compute platform as a "data bus" is

inefficient, costly and may never deliver

the performance required to satisfy the

data absorption rate demanded by large
HPC clients no matter what modifications

we made to the software. Through-

memory data transfer, system bus

contention and general purpose I/O

drivers were not designed to efficiently deliver high, sustained data rates and, when used in

that capacity, deliver sub-optimal bit rates to your network clients.

Unfortunately, the worst is still to come. Assuming that the NFS server code finally gets

the data it needs from the physical file system, the disk data blocks have to be sized to the

users actual NFS request, packetized into datagrams and shipped over some fabric via IP

protocol. Please see Figure 5 for a diagram of this protocol stack. As should be no

surprise to the reader, another complete software protocol stack comes into play here

further impacting the ability of a server to deliver meaningful data rates. Imagine all those

little IP packets interrupting the I/O bus all the time, the OS frantically moving bits of data

here and there through memory and the IP, UDP and LAN drivers all contending for

precious CPU cycles. Performance problems are inevitable.

To eliminate these data bottlenecks you have to re-architect and completely re-define what

a "server" is from the ground up. From our prior discussion, I think we can safely agree

that it is not a workstation with lots of disk and some LAN cards. What it must be is a

machine designed to manage and move large amounts of data efficiently and rapidly from

disk storage to a fabric. Essentially, it should connect the disk subsystem directly to the

network. It should scale (i.e. grow in usable bandwidth) as the clients and, as a second

order, the request rate grows with no loss in performance. Since we are suggesting that

many users entrust their crown jewels (i.e. data) to this machine, it should offer complete

redundancy, virtually 7X24 access to the "jewels" and a bullet proof file system and

backup scheme. A failure affects 10's to 100's of users, not just one or two. Since we are

addressing high speed transfer of very large files on the order of multiple megabytes to

gigabytes, file system corruption and/or physical disk storage failure could be catastrophic.

Client/Server network performance requirements definition

In order to solve the performance conundrum described above and design a file server

capable of truly utilizing high bandwidth fabrics (e.g. ATM, FCS) you have to start with a

189



set of design points far above what

has, to date, been deemed as

acceptable. Some of these points that

we picked for our initial design were as

follows:

1. Sustained data delivery rates in

excess of 50 Megabytes a second
in order to utilize the bandwidth

offered by FCS and/or multiple

OC3 ATM links. As faster fabrics

become available the server must

be designed to accommodate them

without extensive redesign of the
architecture.

2. A scaleable design where the

servers network bandwidth grows

Nomoqraph of File Size, Bandwidth & Time

• UIl_Mm _ _M3 PCGU 1_ 1

L_ II t 6 ]_. 1t I I IzL I _1 fl

Nm "t 84x_nd Mnu_ Hour Day
Mm4e

lined

Figure 6: Data Demand by HPC Platforms and Applications

with the addition of more network ports vs. most current architectures where

additional network ports deliver additional connectivity and fault tolerance but not

necessarily more bandwidth 1°.

3. Sufficient storage capacity to address the large data objects that graphical and "grand

challenge" type applications tend to generate coupled to enough internal bandwidth to

allow the server to access its storage subsystem fast enough to serve, for instance,

multiple 155 megabit ATM OC3 links at rated speed.

4. 100% fault tolerance and 7x24 data availability for the reasons previously described.

Does anybody really need this?

Firstly, as sort of a reality check on the above specifications, we decided to more

accurately understand if there is really strong market demand for extremely fast NFS/FTP

servers. Earlier in this article, we discussed what was plaguing current server designs, but

we did not discuss whether the user demand was 2X, 5X, 10X or whatever. Mark Seagert

and Dale Nielsen at the Lawrence Livermore Computing Lab developed a model to

illustrate the "data demand" of various compute platforms and/or applications. A version

of that model, expressed as a Nomograph is shown in Figure 611.

The upper line, representing some common high performance computers aggregate data

demand is compared to the lower line representing time (e.g., how long will a user wait

for the data). Transmission speed (the middle line) can then be extrapolated from the size

of the data object and the users "patience". We quickly realized that today's HPC demand

is in the 100's of megabytes a second and growing fast.

We also interviewed most of our major customers and were able to identify four basic

client/server application sets that had broad applicability in both the HPC community and

the general commercial marketplace and required high sustained data delivery rates to

perform well.

190



1. Animation: The studio standard for uncompressed, high resolution video is the D1 bit

stream at 270 Megabits a second. Failure to deliver and sustain this isochronous bit

stream will not allow for full motion playback of the digitized clip. All major studios,

post-production and special effect houses are investing heavily in animation studios.

2. Simulation codes ability to accurately predict behavior improve as the number of

points measured and the depth and width of the data stack associated with each point

increases. From data preparation on workstations through large scale computing and

eventual output display on frame buffers, massive amounts of data must flow through

the network quickly and efficiently.

3. Data Mining: The "killer app" of the Ninety's says it all: Sifting through vast quantities

of data to extract information useful to the client. Speed of data access (e.g. time to

market) is everything.

4. Non-coded data storage and delivery; the collection of applications that concern

themselves with the processing of non-coded (e.g. Video on demand, multi media, raw

seismic data, high speed telemetry, image and pattern recognition etc.) data either deal

with extremely large objects or deal with demanding isochronous data flow or, in

many cases, both.

Based on the above and other

market research we conclude

that a large (and growing)

segment of the client/server

market could use a very high

performance data server.

The MPP issue

The movement of massively

parallel MIMD machines into the

commercial sector coupled with

the expected growth of full

motion video data

representations virtually

guarantees that today' s

generation of servers will not be

able to satisfy the data demand

that these new applications and

Data Distribution: Massively Parallel Processinq

MPP Tod_¢

MPP Tomorrow

__

_, (//._! N F_/FTP

__ Pro_,.
) _ FCS/ATM

IIII

m_ __ ../i/
Workstations

_ NFS/r'm
FCS/ATM ProFile

Fabric FCS/ATM

E_ernal Storage/In_rnal Distribution _ External Storage/External Distribution

X HIPPI/FC8

sv.-=_ s=-,,=r

Figure 7: Data serving in a MPP environment

parallel processors will require to operate efficiently.

Commercial applications tend to exacerbate the classic problems of delivering a large

MIMD machine enough data to the correct node on a timely basis so as to actually utilize

the massive compute power that itcan bring to bear. Figure seven illustrates a conceptual

idea of how very high bandwidth data serving might address this well known problem.

We are currently working with certain MPP vendors to further refine and validate the

concept of massively parallel external data distribution.

Rising to the "grand" challenge

I_I



We realized that several challenges would have to be overcome to realize true high

performance NFS and FTP bandwidth. Starting at the network access side, we recognized

that we would have to provide multiple independent network ports which could be mixed

or matched in any combination due to the heterogeneous nature of most users hardware

install base. (Please see Figure 8.) HIPPI-IP, ATM-IP and Fibre Channel-IP were chosen

,, _ to be the first three network
D_i,_ .r;u_-_+- interfaces supported for the

following reasons:

_mmand

Flow

Figure 8: High Speed Server data flow...

.

1. HIPPI, while somewhat costly

and not as flexible as ATM and

Fibre Channel, is here today,

supports 800 megabit transfer

speeds and is supported on most

all high performance

workstations, MPP's and

traditional super computers.

2. ATM is rapidly developing into

the high speed LAN/WAN of

choice and, again enjoys near

universal acceptance. While OC3 speeds of 155 megabits/second are lower that the full

rated speed of our design, most clients cannot currently absorb IP data rates even that

high. We recognized that as OC12 capable clients emerge, we would be well

positioned to support that data rate.

The Fibre Channel Standard .ft._CS) supports gigabit transfer rates, is mature in its

specifications and has been adopted publicly by IBM, HP and SUN. Other workstation

vendors have told us that they plan to support this standard, at both quarter and full

speed implementations, during 1995.

We considered FDDI and 10 megabit Ethernet but decided not to directly support these

interfaces primarily because they lacked the bandwidth to support the marketplace we

were interested in addressing and interconnection to these legacy networks could be

handled by numerous vendors of routers and switches _2.

Outboard protocol processing

In order to achieve the scaleability criterion described earlier, we equipped each network

port with its own integrated protocol engine to handle the IP, TCP or UDP protocol

stacks completely within the attachment port. In addition, and modeled after some of the

seminal work performed by the National Storage Lab (NSL) and others 13, we recognized

the need to separate the command and control paths from the actual user data transfer

paths so as to maximize the speed and efficiency of our internal data bus while providing

for completely asynchronous and concurrent command flows.

Specifically, in the design we implemented, the outboard protocol stack engines strip the

NFS and/or FTP payloads (RPCs) out of the network IP packets and route them off for

processing by an independent dedicated filesystem processor. It is at least metaphorically

192



File metadata backstore

@ ©
t(Raid1)

Z°r=

Data Flow and Bufferina

proFILE® XL File Server

_! Ethernet and

Serial I/0

J Command/Control Bus

I 1
HI-Speed Data Bus 1200 Mb_eslsec) x2

HIPPI,
FCS &
ATM

(HIPPI
Shown)

Figure 9: proFILE XL Data Flow and Buffering

correct to view the server's filesystem as a hardware file system rather than a shared

software construct. A design of this nature allows the protocol engines to scale up as

network connections are added to keep protocol handling from bogging down the server

as users add connectivity and/or clients. This implementation addresses one of problems

with today's fully software based servers; they do not scale well with connectivity and/or

client load.

Filesystem processing and storage management

The file system processor, currently a Motorola 68060, accesses metadata (file identifier

and i-node data) from a internal 32 MB local cache backed up by dedicated mirrored

(RAID 1) metadata disks attached to both the file system processor and the storage

manager processor on a local SCSI bus that is independent of the SCSI busses used to

transfer user data. The local metadata cache is large enough to hold the metadata required

to open and access approximately 50,000 user files under normal circumstances. Internal

caching of filesystem metadata drastically reduces the time required to locate and access

the appropriate user data disk in order to fulfill a NFS transfer request.

Connected to the File System Processor over a short inter-processor VME bus is a

second, identical processor, the Storage Manager Processor, dedicated to managing the

193



physicalorganizationof the userdataandin settingup the transfersof therequesteduser
datafrom the networkportseitherto diskor to the smallwritebehind(fastwrite) caches
locatedin the DeviceModule Controllers(DMC's). TheDMC's are responsiblefor the
attachmentof the physicaldisksubsystemandcanbeconsideredto be "hardware"device
drivers- pleaseseeFigure9 This second processor, operating concurrently with the File

System Processor manages the internal RAID 5 organization of the disk backstore, is

responsible for management of the DMC write behind caches and controls any required

recovery/rebuild processes should there be a failure of one of the DMC's and/or it's

attached disks 14. The Storage Manager Processor sets up, but does not manage, all data

transfers from the DMC caches or disks to the appropriate network ports and vice versa.

Over the command bus, the Storage Manager Processor instructs the DMC(s) to read or

write the required number of blocks of data on/off each DMC's directly attached disk

drives and transfer those disk blocks directly up to the network ports over the servers

internal high speed data busses.

This function segregation between the File System Processor, The Storage Manager

Processor and the multiple Protocol Processors has allowed us to not only scale the server

as client connectivity and data demand grows but to tune each hardware process to

efficiently implement just the functions that it was designed for and no others is. We refer

to this design methodology as "MacroRISC (tin)" design: "Only those functions most

needed shall be implemented on a processor and that processor shall be a RISC processor

that efficiently implements those functions."

Internal data transfer bandwidth

The current design implements two (2) 200 megabyte/second redundant data transfer

busses attached to the network ports and the DMC's via custom designed low latency chip

sets. The replacement of through memory data transfer by internal "third party" transfers

over 400 megabyte/second worth of hardware bandwidth eliminates another of the

performance bottlenecks experienced by software only server architectures.

Each DMC is equipped with a Motorola 68020 processor that allows it to maintain its

own queue of work and operate asychronously and concurrently with all other processes

within the server. Under ideal conditions up to 24 simultaneous SCSI lower interface data

transfer operations can be going on delivering an aggregate internal data transfer

bandwidth of over 160 megabytes a second 14. This 24-wide striped I/O subsystem allows

for 100's ofgigabytes of storage to be attached efficiently (e.g. no more than four LUNS

on a SCSI bus) and could allow for the attachment of integrated tape backup systems, if

desired, sometime in the future. Conceptually, what this distributed design does is to

connect one or more disk drives directly to the network with no intervening software

protocol stacks or memory bandwidth limitations.

Data availability

The File System Processor and the Storage Manager Processor are identical in hardware

design and are designed to back each other up. They constantly monitor each others health

and maintain mirrored metadata caches and system status latches. Should one of the two

194



processorsfail, the other is capableof
performingboth thefilesystemfunctionand
the storage managerfunction albeit at a
significantlyreducedlevel of performance.
This takeovercapabilityleadsto increased
levels of data availability as seenby the
usingclients.

A full UNIX-like system administration
shell, implemented on its own
administrationprocessor, is provided for
operationalconsistencywith existingUNIX
servers.A GUI interface for this shell is
planned for mid '95 availability. Hot
pluggabledisks, imbeddedRAID 0,1,3,5
hardware and N+I power with an
integrated uninterruptible power supply
(UPS)completethe dataavailabilityaspects
of thepackage.

! Client
0000
0000
0ooo
:0ooo
300E
300E
300E
3OOO11
]OO[
300[
300[ 32 Bit HIPPI W/

_Se--_e r- .
0ooo
oooo

0o0oooo__ o
O000
0000
OOOO
0o0o
o-_
O00Ol
000Ol

300_ 8x8 Switch _ .........

OC3 ATM W/Switch

Figure 10: Early lab test bed

Measured performance and early customer experience:

When we set out to initially test the performance of beta level machines in our lab we

rapidly realized that the existing "industry standard" NFS test suites based on LADDIS

type workloads or the older NFS "stones" type of tests were not appropriate for this type

of server. LADDIS and "stones" type tests are oriented towards measuring short, fast

OLTP type workloads and not towards measuring sustained throughput of large files.

Additionally, since we have optimized the server towards NFS-3 large datagram

performance (although it also fully supports NFS-2 workloads) measuring short (e.g. 8K

or less) requests would not allow us to test the sustained large datagram transfer rate. FTP

performance was easier since measuring "throughput" is a simple matter of measuring how

fast files of various sizes actually are transferred to various clients.

What to measure?

What we decided to use as a metric to represent data throughput was to measure the

servers ability to deliver "N" Datagrams per Second, wherein datagrams can range in size

from 8K (NFS-2 limit) to 60K (NFS-3). Sustained Throughput is the product of N and the

datagram size.

During November and December of 1994 we were able to begin testing with beta level

hardware and code. Recognizing that we did not have any client machines fast enough to

drive the server to its limits we slightly modified one of our early servers to enable it to act

as a fast client machine (See Figure 10). All initial measurements were taken utilizing 32

195



bit HIPPI channels.A latersetwastakenusingOC3ATM.2Thegraph(Figure 11)shows
the relationshipbetweenthroughput,datagramsizeand datagramdelivery rate over a
singleHIPPI-IP port configuredper the test bed shown in Figure 10 above. Several
interestingitemsimmediatelycometo light:

1. The serveressentiallyhasthe capabilityto sustaina constantdatagramdelivery rate
regardlessof the sizeof thedatagrampacket.Valuesrangingbetween800-1000data
deliverydatagrams/secondhavebeenobservedacrossall datagramsizestested.

2. Becauseof observationone,deliveredthroughputis primarilya functionof datagram
size.

It should be noted that these tests were performed using a modified server as a "client" so

as to remove, as much as possible, the "clients" effects on data rate. The strong

relationship between datagram size and throughput may not be as linear with more

traditional clients due to their potential inability to absorb high delivery rates of large NFS-

3 style datagrams.

The specific initialization and opening state

parameters for this test were as follows:

1. The file to be accessed had been opened

and at least one request had been made

so as to prime the read-ahead data

caches and force the caching of

necessary file and filesystem metadata.

2. Subsequent accesses were of a

sequential nature.
3. The files accessed were 10's of

megabytes in size or larger. Most of the

small variances noticed are probably

explained by file (request) size.

.-. 70 r
o

_5o!

_ 4o

D

to 0 L_

32 Bit HIPPI (NFS & FTP Performance)

r_ Base Variance
][]
J

8K 16K 32K 56K

Datagram Size

Figure 11 HIPPI-IP NFS/FTP Throughput

60K FTP

We felt that these initial state parameters were appropriate since the target use of this

server is for applications where large files are to be accessed and the amount of data that

the client requests is substantial. This test was designed to measure sustained data

throughput to a client both requiring and capable of absorbing high speed IP traffic.

Priming the data and metadata caches eliminates the initial latency of the "get attributes"

sequences and most mechanical disk effects. Where file and request sizes are large, start-

up latencies are essentially amortized over many megabytes of data transfer and become

trivial. For small requests this is not the case and different start up states should be

assumed for any kind of performance testing. We plan to perform more extensive

performance testing over a wider range of workloads during the first half of 1995.

2 All results shown here should be considered preliminary due to the early levels of hardware and

code used to perform these tens. Final data will be formally published in an update to this paper in
the second quarter of 1995.

196



Animation Workslations

Silicon Graphics

POWER CHALLENGE

and Indioo Clients
Server

0000
0000
oOOOll

0000
0000
0000

__ ooo__oo
0000

If

OC3 ATM W/Switch _ HIPPI

_ SwitchCray Research EL 90

Figure 12 Beta ATM Customer Installation

were similar to HIPPI.

ATIVI

ATM performance data is in the process of

being developed more fully. Early lab

results, obtained during December of 1994,

have demonstrated the ability to sustain

approximately a 12.5 megabyte/second

(-100 Mbits) data stream over an OC3

(155 Mbits) ATM channel coupled to a

FORE Systems FORE-Runner" ATM

switch. (See Figure 10) MI switching and
virtual circuit initializations were controlled

by FORE Systems SPANS 16 interface code

which we have implemented in the ATM

versions of the proFILE server. The

datagram size used to obtain these results

was 56K and the initial state parameters

As of this date, December 1994, the maximum number of ATM channels that we have run

simultaneously at this rate is two. No measurable degradation in performance was noticed.

Both ATM channels sustained about 100 megabits/second of user data transfer. We

expect that when all ATM performance tuning is completed sometime in the second

quarter of 1995 that we will be able to saturate four OC3 ATM channels with large NFS-3

datagrams.

Early ATM Customer result:

In December of 1994 two proFILE HIPPI and ATM files servers were installed at a

customer who's major application is various sorts of studio animation and video post

processing 3. The goals of this early beta site were fourfold:

1. Verify ATM-IP NFS operations when interconnected with FORE Systems products

and Silicon Graphics POWER CLALLENGE XL ct_) and Indigo ttm) clients via the
SPANS interface.

2. Verify HIPPI-IP (and HIPPI IPI-3) interconnect with Cray Research's EL and J-90

series of processors.

3. Measure what sustained performance could be achieved at various datagram sizes and

application request patterns.

4. Insure proper operation to all clients in an NFS-2 and NFS-3 environment.

ATM & SPANS: Installing and setting up the ATM network went very smoothly. The

ATM part of the network, with the exception of the ATM boards in the proFILE server

which were designed by ourselves, was all supplied by FORE systems and operated well.

A simple point to point star configuration was used for simplicity and guaranteed

3 The results presented here are very preliminary and do not represent a production level environment;
rather they represent interim results of an ongoing experiment.

197



bandwidth to each client. We and the customer specifically avoided complex mixed vendor

fabrics due to the immature state of many ATM products and, more importantly, industry

accepted specifications.

NFS-3: NFS-3, as implemented on pre-release versions of Silicon Graphics IRIX

operating system Releases 5.3x and 6.1x 4 had some early-on stability problems and

command/response state errors. This was not particularly surprising given that we were all

working with non-released code and a completely new version of NFS. Fortunately, many

of the NFS-3 problems were uncovered in our labs prior to install which made the

installation far less painful that it might have been. Silicon Graphics was very helpful and

responsive working with us to address any NFS-3 glitches in IRIX and our server code.

Based on our progress to date, we expect that by the second quarter of 1995, NFS-3 will

be ready for general availability and production use.

HIPPI-IP and Cray "'big block" NFS: Cray Research, recognizing the performance

limitations of NFS-2 years ago, implemented a proprietary Cray-to-Cray extension to

NFS-2 that allowed the use of large datagrams up to 60K This has proved to be very

effective in speeding up interprocessor IP communication between Cray platforms. Peter

Haas, at the University of Stuttgart, has measured sustained Cray NFS traffic up to 7.5

8K - 1.8 MB/sec.

16K _3.2 MB/sec.

32K _5.4 MB/sec.

56K _5.4 MB/sec.

60K _5.4 MB/sec.

Table 1: HIPPI NFS Performance

MB/second between a Cray Y-MP/2E

server and a Cray C-94 client _7.

When we initially installed the proFILE

server on the Cray EL, it was

configured as a storage server utilizing

the IPI-3 protocol over HIPPI.

Everything worked well, with data rates

observed in excess of 50-60

MB/second After determining that IPI-3 disk protocol operated correctly with the EL, we

upgraded the proFILE to full file server mode and ran some initial NFS test runs at

various datagram sizes.

The following table (Table 1) shows achieved data rates as a function of datagram size.

We discovered that UNICOS 8.0 (Cray's operating system) would not generate a packet

larger than 32K even though it was configured to do so. This problem was confined to the

EL series and has been identified and corrected by Cray. Because of this, there was no

throughput improvement above 32K datagram sizes. We plan to publish updated

performance numbers when we retest with updated proFILE and UNICOS server code in

early '95. We expect to see substantial improvements at that time.

ATM NFS Performance: As previously mentioned we achieved effective ATM saturation

rates of over 100 megabits/second of user data when running two proFILE platforms as

client and server respectively. (See Figure 10) When configured as per Figure 12

(proFILE to SGI Indigo) we achieved 15-18 Mbits/second sustained NFS transfer rates

4 IRIX releases coded as "5.2x" support 32 bit hardware platforms. Versions coded 6.0x support 64 bit
platforms. Release 5.2 and 6.0 are at the same basic function level. The "x" represents a non released
version of the OS.

198



per physicalATM channelusingNFS-38K packets.1RIX 5.3x's supportof NFS-3 does
not yet supportanydatagramsizeslargerthan8K nor the ability to configuresignificant
additionalquantitiesof UDP datagrambuffers.We expectthis situationto becorrectedin
1Q95.

Given that the proFILE servercanhold a constantdatagramdeliveryrate regardlessof
datagramsizeand that the client seemedto be primarily gatedby the virtual memory
manager,IP protocol stack and the NFS RPC interrupt handlercomponents,we can
extrapolateperformancein therangeof 50-80Mbits/sec.when1RIX fully supportslarge
(56K) datagramsizesand sufficientUDP buffering is available.(e.g. The OS client
componentsmost involvedin limiting datagramabsorptionrate will be executedfar less
frequently.)Updatedinformationwill beprovidedin arevisionto this paperlaterin 1995.

Whilebothwe andthecustomerarepleasedwith theseearlyresultswe feelthat theyare
not indicative of the throughput that we can achievewith productionlevel operating
systemcode,someapplicationtuningand,mostimportantly,experience.

Summary

Thedistributed,parallelserverdesignimplementedin theproFILE familyof networkdata
servershaspromiseto revolutionizeandmakepracticaltheconceptof file servingto truly
high performanceclient machines.By eliminatingsottwareprotocol stacks,systemand
I/O busses,memoryaccessesandoperatingsystemoverheadsinherentin most "servers"
today,performancelevelsthat usedto beavailableonly ona local file systemcannow be
delivered(and potentiallybettered)on a remote,sharedfile system.On the client and
network side,the full implementationof the NFS-3 protocolsuiteandthe availabilityof
fast fabricscompletesthepicture.

For thefirst time, continualdatastarvationwill becomeathing of thepastandthepromise
of highperformanceClient/Servercomputingwill becomeareality.

199



Endnotes and References:

i An informal count of physical attachments in use a few years ago was on the order of 35 or more. Some

examples were: IBM BMX & ESCON, DEC Q-BUS, CI & BI BUS, Univac word channel, Boroughs A-
Series disk interface, NCR direct connect, SCSI: (l&2, Fast, Fast/Wide, differential and open ended), IPI:

(2 & 3, Voltage or Current mode and IBM's DFCI used on the AS/400), SMD, and numerous others.

2 Typical installations of this sort may have utilized an IBM 7094 for arithmetic operations and one or
more IBM 1401 processors as I/O support machines. Early CDC 6x00 installations were similar. Cray

Research users often employed large IBM and Sperry mainframes dedicated to data preparation and input

support and, more importantly, as permanent data repositories. The Los Alamos Common File System

(a.k.a. "Datatree" - in it's commercial incarnation) was a well known example of this scenario.

3 Examples of some common I/O channel to I/O channel "black boxes" were the Network Systems

Corporation (NSC) "DX" (Data eXchange) family of interconnect products and, at a higher function level,
the Ultra-1000 network hub offered by Ultra Network Technologies.

4 CFS was brought up in 1979 on an IBM 370/148 processor running the MVS (Multiple Virtual

Storages) operating system. Datatree, released by General Atomics is functionally equivalent to CFS
release 56.

Most peer to peer LANS and WANS today employ one of two generic schemes to allocate bandwidth to

multiple users at the physical level: 1) CSMA/CD (Carrier Sense Multiple Access/Collision Detect) which

is employed by Ethernet type LANS wherein the client "listens" to the network and, if it seems to be free,
transmits its data. Obviously, collisions (and retries) are common during heavily loaded periods, or 2)

token controlled access, (Token Ring, FDDI, etc.) wherein a user must have access to a "token" to

transmit data. Controlled access fabrics rarely have collision problems, but suffer from the higher

overhead required to manage and share the token. See ANSI standard document 802.xx for further

reading.

6 There was one major exception to this statement. Under the direction of Dr. Richard Watson, the

National Storage Lab (NSL) located at the Lawrence Livermore National Laboratory (LLNL) directed it's

focus towards serving HPC platforms at very high speeds primarily via utilizing a construct called Third

Party Transfer over HIPPI networks. (See reference 13) All data transfer was under control of a modified

version of Unitree (NSL-Unitree) and is commercially available from IBM's Federal Sector Division.

SCSI data rates delivered to various points in the protocol stack (driver level, raw, and block interfaces)

were obtained via the use of an IBM tool "perfmon" running on an RS/6000 98B with AIX 3.2.5. There is

no guarantee that any user can or will obtain these results, They are presented for illustrative purposes

only. Please see IBM publications GA23-2704-00 and GA23-2708-00 for similar information concerning
achieved data rates over HIPPI channels. Interestingly, while the numbers are different, the ratios hold.

s Ruwart, T. M. and O'Keefe, M.T. 1993. "Performance of a 100 megabyte/second disk array" (Preprint

93-123), University of Minnesota, Minneapolis M.N

9 This approximation was developed by measuring the cycle consumption required for an IBM RS/6000
980 server to sustain a 50 MB/Second data rate over a HIPPI channel utilizing the IPI-3 protocol. It

required approximately half of the available processor cycles to achieve this rate thus allowing us to
extrapolate that every 5 MB/sec of data rate required 5% of the processor. Striped SCSI, due to the larger
number of small I/O chunk requests and the need to re-assemble such chunks would require more. For

furthur reading please see:

• Arneson, D., Beth, S., Ruwart, T. and Tavakley. 1993 "A testbedfor a high performance file server"

Procedings of the 12th IEEE Symposium on Mass Storage Systems, April 26-29, Monterey C.A.

• Chen, P.M. and Paterson, D.A. 1990. "Maximizing performance in a striped disk array" Proceddings

of the 1990 International Symposium on Computer Architecture, pp. 322-331.

1o In certain extreme cases, the addition of additional I/O ports on UNIX workstations configured as

servers may actually have the effect of reducing the overall throughput of the server. This counter-intuitive

phenomena results from the higher multi-programming level necessary to manage the increased number
of I/O ports and data movement operations that result from such additions. The increased interrupt rate

across the system bus and within the OS can lead to diminished overall throughput. Data supporting this

--- 200



observation, developed on an IBM RS/6000 980 server driving multiple HIPPI channels is available from

the author on request.

11The original Nomograph upon which the representation shown in this paper is based was developed by
Dr. Mark Seagert's and Dr. Dale Nielsen, both at the Lawrence Livermore Computing Lab, as a method

of estimating the data demand and transfer speeds required to feed future generations of processors
envisioned at LLNL Additional data points relating to ATM and video frame transmission were added by

the author.

_2Vendors that we are aware of today who have either announced products or announced their intentions

of developing products to interface HIPPI, FC and/or ATM to existing Ethernet and FDDI networks

consist of Netstar Inc., Essential Communications, Bay Networks and FORE Systems. Additional vendors

have announced intentions to enter this market in some form or another.

13 Hyer, R., Ruth, R. and Watson, R. 1993. "'High performance direct data transfer at the National

Storage Lab" Procedings of the Twelth IEEE Symposium on Mass Storage Systems, Monterey, C.A.

April 26-29, 1993.
14 Wood, L. C. 1994. Gen 5 Storage Server - General Information. Maximum Strategy Inc., Milpitas CA.
15 The author would like to recognize the invaluable contribution of John Lekashman, Bruce Blayiock,

Bob Ciotti, and many others at NASA-Ames for assistance in the design and validation of the specific

function splits described in this paper. Without their help in measuring and understanding the choke

points in NFS data flow we would not have been able to accomplish this project in the time frame

required.
_6 SPANS (_Simple Protocol for ATM Network _Signalling) is a proprietary API developed by FORE

Systems as a method to set up and control FORE's family of ATM switches. The current lack of a

complete standard for ATM has led to the development of several competing proprietary access and
control schemes; most of them not compatible with other vendors switch and interface hardware.

_7Haas, P. 1994. "Optimal UDP buffering for UNICOS 8.0 NFS" University of Stuttgart, Stuttgart,

Germany. (an unpublished work)

201




